
$C_n H_{2n+2}$ (a)

(b)

Allow *x* in place of *n* 

1



Only

Chain

Must show every bond Allow branched chain

(c)  $C_9H_{20}$ 

> To break the (C-C and/or C-H) bonds M2=0 if break C=C To make products which are in greater demand / higher value / make alkenes Not more useful products Allow specific answers relating to question

(d)  $\mathrm{C_5H_{12}+3O_2} \rightarrow 5\mathrm{C}+6\mathrm{H_2O}$ 

Allow other balanced equations which give C and CO/CO<sub>2</sub>

Causes global dimming / exacerbates asthma / causes breathing problems / makes visibility poor / smog Apply list principle

M1.

2

1

1

1

| <u>106.5</u><br>143 (x - | 100)                                        | 1                                                                                                         |
|--------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 74.48%                   | Allow 74.5%                                 | 1                                                                                                         |
| 3                        | Only                                        | 1                                                                                                         |
| 2,3-dichlor              | -                                           |                                                                                                           |
| <u>C₃H₅CI</u>            |                                             | 1                                                                                                         |
|                          | Only                                        | 1                                                                                                         |
|                          | 143 (x<br>74.48%<br>3<br><u>2,3-dichlor</u> | 143   (x 100)     74.48%   Allow 74.5%     3   Only     2.3-dichloro-3-methylpentane   Ignore punctuation |

| M2. |
|-----|
|     |

(a)

(i)

single (C-C) bonds <u>only</u>/no double (C=C) bonds

Allow all carbon atoms bonded to four other atoms Single C-H bonds only = 0 C=H CE

C and H (atoms) only/purely/solely/entirely Not consists or comprises Not completely filled with hydrogen CH molecules = CE Element containing C and H = CE

(ii) C<sub>n</sub>H<sub>2n+2</sub>

Formula only

[13]

1

1

 $C_x H_{2x+2}$ 

(b) (i)  $C_{5}H_{12} + 8O_{2} \rightarrow 5CO_{2} + 6H_{2}O$ Accept multiples Ignore state symbols

(ii) gases produced are greenhouse gases/contribute to Global warming/effect of global warming/climate change
Allow CO₂ or water is greenhouse gas/causes global warming
Acid rain/ozone CE = 0

(c) carbon Allow C

Allow soot

(d) (i)  $C_{9}H_{20} \rightarrow C_{5}H_{12} + C_{4}H_{8}$ 

## OR

 $C_9H_{20} \rightarrow C_5H_{12} + 2C_2H_4$ Accept multiples

(ii) Plastics, polymers Accept any polyalkene/haloalkanes/alcohols

## (iii) so the <u>bonds</u> break **OR** because the <u>bonds</u> are strong*IMF mentioned* = 0

(e) (i) 1,4-dibromo-1-chloropentane/1-chloro-1,4-dibromopentane Ignore punctuation

1

1

1

1

1

1

1

|     |     | (ii) | Chain/position/positional<br>Not structural or branched alone                                                                       | 1 | [11] |
|-----|-----|------|-------------------------------------------------------------------------------------------------------------------------------------|---|------|
|     |     |      |                                                                                                                                     |   |      |
| M3. |     | (a)  | Single bonds <u>only</u> /no double or multiple bonds;                                                                              | 1 |      |
|     |     | Co   | ntains carbon and hydrogen <u>only;</u><br>C and H <u>only</u>                                                                      |   |      |
|     |     |      | not C and H molecules                                                                                                               | 1 |      |
|     |     | Alk  | anes;                                                                                                                               | 1 |      |
|     | (b) |      | Fractions or hydrocarbons or compounds have different<br>ing points/ separation depends on bp;<br><i>Ignore mp and vdw</i>          | 1 |      |
|     |     | (2)  | bp depends on size/ <i>M</i> ,/ chain length;<br>If refer to bond breaking/cracking/ blast furnace/oxygen/air 2<br>max              |   |      |
|     |     |      | Temp gradient in <u>tower or column</u> / cooler at top of <u>column</u>                                                            | 1 |      |
|     |     | or v | ice versa;<br>QWC                                                                                                                   | 1 |      |
|     |     |      | Higher bp / larger or heavier molecules at bottom (of<br>umn) or vice versa;<br>Not increasing size of fraction<br>Not gases at top |   |      |
|     | (c) |      | ge molecules or compounds or long chain hydrocarbons<br>ken) into smaller molecules or compounds or smaller                         | 1 |      |

(broken) into <u>smaller</u> molecules or compounds or smaller chain hydrocarbons; *QWC* 

|     | Zeolite or aluminosilicate (catalyst);                                                                                                                                                   |   |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
|     | $\begin{array}{c} C_{14}H_{30} \rightarrow C_8H_{18} + C_6H_{12}; \\ Only \end{array}$                                                                                                   | 1 |  |
|     | Smaller chain molecules are in more demand or have higher value or vice versa;<br>Insufficient to say more useful/have more uses                                                         | 1 |  |
| (d) | $C_8H_{18} + 8\frac{1}{2}O_2 \rightarrow 8CO + 9H_2O;$<br>Allow multiples                                                                                                                | 1 |  |
|     | Rh/ Pd/Pt/Ir or in words;<br>Penalise contradiction of name and symbol                                                                                                                   | 1 |  |
|     | $2CO + 2NO \rightarrow 2CO_2 + N_2 / 2CO + O_2 \rightarrow 2CO_2;$<br>Allow multiples                                                                                                    | 1 |  |
|     | Greenhouse gas/ absorbs infrared radiation;                                                                                                                                              | 1 |  |
| (e) | car less powerful/ car stops/ reduced performance/ won't run<br>smoothly/ can't accelerate;<br><i>Not incomplete combustion or bad effect on engine</i><br><i>Not doesn't go as far.</i> | 1 |  |
|     | Test it (before sale) /Quality control etc;                                                                                                                                              | 1 |  |
| (f) | (compounds with) same molecular formula / same no and type of atoms;<br>Not atoms/elements with same molecular formula.<br>If same <u>chemical</u> formula, can allow M2                 | 1 |  |
|     | And different structure/ structural formula;<br>M2 consequential on M1<br>Allow displayed formula for M2                                                                                 | 1 |  |
|     | 2,2,4-trimethylpentane;<br>Only (but allow numbers in any order)                                                                                                                         | 1 |  |

|   |     | . ,   |                                                                                                                                                                   | 1 |
|---|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   |     | (ii)  | C <sub>9</sub> H <sub>20</sub> only                                                                                                                               | 1 |
|   |     | (iii) | $C_{11}H_{24}$ + 17 $O_2 \rightarrow 11CO_2$ + 12 $H_2O$                                                                                                          | 1 |
|   |     | (iv)  | $C_{\scriptscriptstyle 11}H_{\scriptscriptstyle 24} + 6O_{\scriptscriptstyle 2} \rightarrow 11C + 12H_{\scriptscriptstyle 2}O$                                    | 1 |
|   |     |       |                                                                                                                                                                   |   |
| ( | (b) | (i)   | $C_{\scriptscriptstyle 10}H_{\scriptscriptstyle 22} \to C_{\scriptscriptstyle 3}H_{\scriptscriptstyle 6} \ + \ C_{\scriptscriptstyle 7}H_{\scriptscriptstyle 16}$ | 1 |
|   |     | (ii)  | correctly drawn structure of methylpropene<br>(insist on clearly drawn C-C and C=C bonds)                                                                         |   |
|   |     |       |                                                                                                                                                                   | 1 |
| ( | (c) | Any   | r <u>two</u> from                                                                                                                                                 |   |
|   |     | 0     | chemically similar or chemically the same or react in the same way                                                                                                |   |
|   |     | 0     | same functional group                                                                                                                                             |   |
|   |     | 0     | same general formula                                                                                                                                              |   |
|   |     | ο     | differ by CH₂<br>(penalise same molecular formula or same empirical<br>formula)                                                                                   |   |

(a)

(i)

M4.

## fractional distillation or fractionation

[20]

[8]